بررسی انواعی از توابع محدب

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی
  • author مریم سرداری
  • adviser جمال رویین
  • Number of pages: First 15 pages
  • publication year 1388
abstract

هدف اصلی این پایان نامه بررسی انواعی از توابع محدب نظیر توابع محدب تقریبی، محدب میانی، محدب میانی تقریبی، شبه محدب، شبه محدب میانی، m-محدب و (alpha,m)-محدب است. در این راستا با ارائه ی تعاریف و قضایا سعی می نماییم علاوه بر بیان مفاهیم، به ذکر خواص اصلی این گونه توابع مانند پیوستگی و کران داری آن ها بپردازیم و نامساوی های تحدب گونه ای را که هر کدام از این توابع به وسیله ی آن ها تعریف می شوند، معرفی نماییم. همچنین مقایسه ای از حیث قضایایی که برای هر نوع از توابع محدب برقرارند، به عمل خواهیم آورد. در انتها نامساوی های انتگرالی نوع هرمیت- هادامارد جدیدی را برای توابع (alpha,m)-محدب به دست می آوریم. لازم به توضیح است که این نامساوی ها از تعمیم نامساوی های ذکر شده در بخش هفتم فصل اول به دست می آیند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها

در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده‌ است. در پایان نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.

full text

بررسی محدب بودن انواعی از بردهای عددی

از مطالب مهمی که در مبحث بردهای عددی عنوان می شود، محدب بودن آن هاست. در این پایان نامه، هدف بررسی محدب بودن چند نوع از بردهای عددی است. این پایان نامه شامل مطالبی برای آشنایی با انواع بردهای عددی و خواص آن ها می باشد. مهم ترین بخش این نوشته به برهانی برای محدب بودن برد عددی رتبه بالای عملگرهای خطی کران دار روی فضاهای هیلبرت اختصاص دارد. برهان هایی که در این زمینه آورده شده است، عموماً برای فه...

15 صفحه اول

توسیع توابع محدب

در این رساله مفهوم تابع ‎$eta$-‎محدب به عنوان تعمیم تابع محدب ارائه و به صورت پایه ای خواص آن مورد بررسی قرار می گیرد. با ارائه مثال هایی از توابع ‎$eta$-‎محدب نشان داده می شود که هر تابع محدب خود یک تابع ‎$eta$-‎محدب است و در مقابل توابع ‎$eta$-‎محدبی وجود دارند که محدب نیستند. شاخص بندی توابع ‎$eta$-‎محدب و یافتن شرایطی برای تابع که معادل با ‎$eta$-‎محدب بودن تابع باشد از دیگر موضوعاتی اس...

توابع محدب عملگری

با توجه به اهمیت نامساوی ها در درک کامل مفاهیم در ریاضیا ت، در این پایان نامه به بررسی توابع محدب عملگری در ایجاد نامسا وی ها بر روی عناصر خود الحاق در( b(h و نگاشت های خطی مثبت می پردازیم و پس از بیان صورت های معادلی برای محدب عملگری بودن یک تابع، با ایجاد ارتباط میان توابع محدب عملگری و یکنوای عملگری نمایش انتگرالی این دسته از توابع را در بازه های مختلف مشخص می کنیم. در ادامه اصلی ترین نامسا...

15 صفحه اول

مباحثی در توابع محدب

هدف اصلی این رساله، بررسی نامساوی های انتگرالی در چارچوب اندازه های یکنوا و انتگرال های غیرخطی است. برای این منظور، در ابتدا شکل جدید نامساوی هرمیت-هادامارد مربوط به توابع مقعر و توابع محدب حاصل ضربی را به دست می آوریم. سپس نامساوی های از نوع جنسن برای توابع مقعر را در حوزه اندازه های یکنوا بررسی می کنیم. در ادامه نامساوی جدیدی از نوع ساندور برای توابع مقعر و نامساوی جدیدی از نوع هادامارد برای ...

زیرکلاسی از توابع نزدیک به محدب

در این پایان نامه ابتدا در مورد توابع تک ارز و خواص هندسی آنها و همچنین رابطه ئ این خواص هندسی با شرایط معادل خواص تحلیلی را مطالعه می کنیم. سپس زیر کلاسهای k وs^* (?) که شامل توابع نزدیک به محدب در دیسک واحد u است را تعریف می کنیم وبه کمک خواص پیروی و مشتق توابع تحلیلی خواص شمولیت، برآورد ضریب وقضایای پوششی وچند خاصیت دیگر را در مورد زیر کلاس k_s (?,a,b) مورد بحث وبررسی قرار می دهیم. کارهای ا...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023